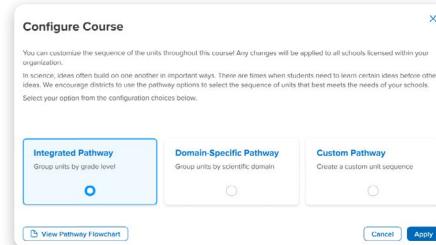


Quick Start Guide for Middle School
Exciting updates including a brand new design that optimizes navigation and use!

Welcome to Discovery Education Science Techbook. This Quick Start Guide will support your review of our middle school science curriculum.

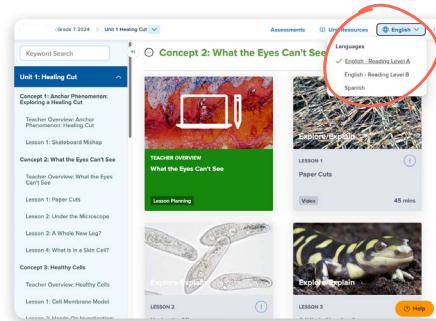
1 Launch Science Techbook


Select the *Science Techbook* tile from the Curriculum Packs section of your My DE homepage. Use the dropdown at the top and select Middle School Science.

Program > Program Login

2 Get Familiar with the Program

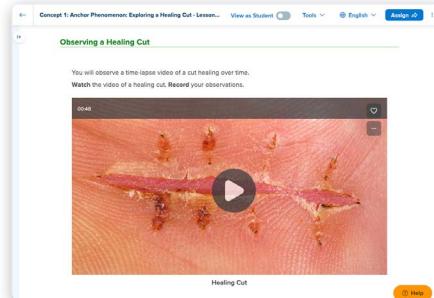
Modular Units are bundled by domain-specific performance expectations and disciplinary core ideas. While two suggested pathways are provided, integrated and discipline-specific, districts may also create a customized path. Each Unit Storyline follows a 3D learning framework by launching with a relevant anchor phenomenon.


Program > Configure Course

3 Navigate the Tools

Use the toolbar at the top of the page to change from **English to Spanish**, adjust the Lexile of specific lessons, access assessment reports, launch the interactive glossary, and more. Navigate to other Units using the left navigation or the drop-down menu in the top left.

Helpful Hint: At any point, you can return to the Orientation Homepage by selecting the "D" in the upper left corner of the screen.

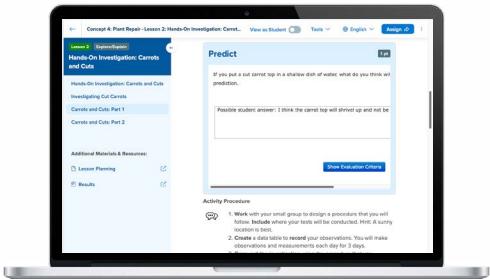


Program > Unit

4

Launch Phenomena Storylines

A Unit-level **Anchor Phenomenon** drives teaching and learning by creating a **Storyline** that connects Engage lesson content and allows learning to build over time. Lessons are supported with three-dimensional planning materials, connections to the anchor phenomenon, and more. Within the Anchor Phenomenon lesson, students record their initial observations and questions and construct a tentative explanation or model that will drive their investigations throughout the Unit.

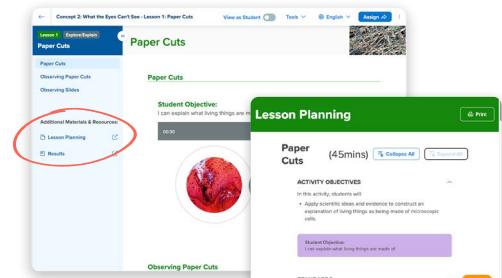


Course > Unit > Anchor Phenomenon

5

Demonstrate and Take Ownership

In the Explore lessons, collect and generate evidence with hands-on activities, interactives, multimedia, literacy lessons, and STEM projects. This intentional instructional design sequences **student-driven learning** through questions and discourse and strategically integrates the SEPs, CCCs and DCIs throughout. Using a **Claim, Evidence, and Reasoning** framework, in Explain, students construct explanations or refine models to support their claims related to the phenomenon.



Course > Unit > Lesson

6

Access Instructional Supports

Select “Lesson Planning” in the left hand menu to access **point-of-use resources** such as teacher background, learning objectives, three-dimensional support, SOS instructional strategies, activity setup and safety, learning pathways, and much more! Scaffolded differentiation strategies for Approaching Learners, Advanced Learners, and Multilingual Learners are also included at point-of-use for quicker planning.

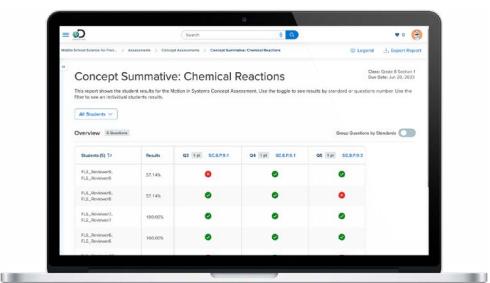


Program > Lesson > Educator Support

7

Investigate the Assessments

You can find **Formative, Summative, and Performance-Based Assessments** throughout the learning process. Look for Tech-Enhanced Items (TEIs) with auto-grading, “What Did You Figure Out Today” formative prompts, Unit Projects, and Performance-Based Assessments. Other ways to measure the progression of student learning include the Driving Question Board, Hands-On Activities, models, and scientific explanations.



Program > Lesson > Assessments

8

Review Results and Progress

Monitor a student’s progress throughout the course with a variety of multi-modal assessments that provide **data and analytics** on progression. Access formative, summative, and performance-based assessment data by selecting **Assessments** in the right-hand side toolbar to access the dashboards.

Program > Assessment Reports