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Exploring Fairness in an Adaptive Learning 

Platform 
 

Introduction 
 

About DreamBox Math 

DreamBox Math from Discovery Education is an adaptive K-8 math program, rated ESSA-

Strong, and serves 5 million students across all 50 states, as well as in Canada and 

Mexico. Designed by educators, DreamBox Math aims to introduce, reinforce, and 

formatively assess foundational math concepts, supplementing classroom curricula. The 

program supports teachers and students by identifying and addressing gaps in student 

knowledge, thereby strengthening foundational skills and ensuring students are 

prepared for classroom learning. 

DreamBox Math lessons are crafted to be engaging and enjoyable for students, 

emphasizing real-world applications and models. Students are empowered to choose 

their next lesson from a selection curated by DreamBox's proprietary adaptive engine. 

This adaptive engine is a core component of DreamBox, meeting students at their 

current level, recognizing each child's unique strengths and areas for development, and 

providing a personalized learning experience tailored to their individual needs. 

DreamBox and AI 

With the rapid advancements in Generative AI (GenAI) and increased public awareness 

around tools like ChatGPT, companies face significant pressure to integrate these 

technologies into their core products. However, at DreamBox, we remain focused on 

achieving optimal and equitable learning outcomes for all students. Guided by our core 

mission, we have adopted a conscientious approach as we explore moving beyond "AI 

1.0" and begin integrating generative pre-trained transformers into our products. 

A key concern in deploying these advanced technologies is the potential for inherent 

biases. Large language models (LLMs) can inadvertently perpetuate and amplify existing 

biases in their training data, manifesting as gender, racial, or cultural stereotypes. Biased 
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AI systems could further widen pre-existing educational disparities, making it crucial to 

ensure that AI-generated recommendations are equitable and unbiased. 

Addressing these concerns aligns with national guidelines for AI in education, such as 

those outlined by the U.S. Department of Education’s Office of Educational Technology 

(Artificial Intelligence and the Future of Teaching and Learning), which emphasize 

fairness, accountability, and transparency in AI systems. These guidelines advocate for 

rigorous testing and validation to ensure AI tools are inclusive and free of bias. By 

committing to these principles, our efforts to develop predictive and generative models 

for DreamBox Math aim not only to enhance learning outcomes but also to promote 

fairness and inclusivity. This ethical approach to AI deployment underscores the broader 

significance of our research, striving to create a more equitable and effective educational 

landscape for all students.  

Research Overview 

The purpose of this technical document is to aid the advancement of transparent and 

equitable AI-systems by sharing publicly some of our research into factors which 

influence student learning outcomes in DreamBox Math, including but not limited to the 

impact of student ethnicity.  

Methodology 

Data Collection and Preparation 

For this study, we collected usage data from a single U.S. public school district 

accumulating 1.24M play events from 7,707 students spanning grades 3 through 6. A 

play event is defined as an individual instance of a lesson being played by a student at a 

specific time. This data was collected from October 2022 to June 2023, during the 2022-

23 school year.  

For the purposes of this research study and others, the district under investigation 

provided student ethnicity data. Each record in the dataset represents a play event, 

detailing the associated student's behavioral characteristics with product usage, various 

play-level metrics, and classroom features at that point in time. We note that there were 

https://tech.ed.gov/ai-future-of-teaching-and-learning/
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several crucial diversity dimensions (such as free-lunch, ELL, household income, 

independent learning plans, etc…) that were unavailable in this study.  

The dataset includes metrics such as product usage, class size, grade level, lesson 

difficulty, student pass rate, and ethnicity. These metrics were chosen to evaluate their 

influence on student success and to ensure a comprehensive analysis of the factors 

affecting learning outcomes in DreamBox Math. 

 

Fig 1. Target variable overview. a) Raw lesson scores from 1.24M play events spanning 

grades 3 through 6. b) The raw lesson scores are converted into a binary variable (lesson_score) 

used in this analysis. For the purposes of this analysis, raw lesson scores at or above 80 are 

considered a pass (lesson_score = 1). 

The target variable in our dataset is the lesson score, which reflects the student’s 

performance in a given lesson at a particular time. Originally a continuous variable 

spanning a range of 0 to 100, we converted the lesson score into a binary variable: 0 if 

the lesson score < 80, and 1 otherwise.  

A common problem in developing predictive models is dealing with large class 

imbalances in the target variable. In this case, 83% of the play events included instances 

where the student passed. To handle this class imbalance of the raw data set, we have 
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randomly under-sampled the pass play events (lesson_score = 1) resulting in a data set 

with approximately 244,954 play events from 7,296 students.  

Below, we provide a detailed data dictionary describing the individual features 

(predictive factors) that might impact learning outcomes (target variable) 

Features 

Play-level features 

• student_passrate_90: The ratio of successfully completed lesson play attempts to 

the total number of lesson play attempts by the student, calculated from 90 days 

prior to the current play attempt's timestamp up to the current play attempt. This 

metric only includes complete play attempts, excluding those left unfinished. 

• usage_frequency: The average number of lessons played per week by the student 

from the start of the school year to the current lesson play event. 

• usage_consistency: The standard deviation of the average number of lessons 

played per week by the student from the start of the school year to the current 

lesson play event. 

• usage_depth: The total number of lesson plays by the student from the start of the 

school year to the current lesson play event. 

• usage_retention: The total number of weeks in which the student engaged in 

lesson plays from the start of the school year to the current lesson play event. 

• play_seconds_of_duration: The total time, in seconds, spent by the student to 

complete a particular lesson play event. 

• days_since_last_play: The number of days since the student last engaged in a 

lesson play event. 

• random_num: A randomly generated value ranging between 0 and 1. We include 

this for analysis of feature importance of the predictive model. 

• lesson_passrate_90: This is the ratio of successfully completed attempts to the 

total number of attempts for a specific lesson, measured from 90 days prior to the 

current play attempt's timestamp up to the current play attempt. 

• season: The season at which the play event occurred. One-hot-encoded into three 

variables:  

Fall: August to November, Winter: December to February, Spring: March to May 
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Student-level features 

• ethnicity: The ethnic group to which the student belongs. This data was provided 

by the school district and is mutually exclusive categorical variable for each 

student. This data was one-hot-encoded into the five ethnicity groups provided by 

the district: Asian, Black, Hispanic, Indigenous, and White. 

• class_grade_numeric: The grade level of the class that the student was part of 

during a play event. This categorical variable is mutually exclusive and was one-

hot-encoded before feeding into the predictive model.  

• number_of_classes: The total number of classes the student was enrolled in 

throughout the entire school year (July 2022 – June 2023).  

Class-level features 

• students_per_class: The number of students enrolled in the class that the student 

was part of during a lesson play event. 

Target variable 

• lesson_score: Originally a continuous variable ranging from 0 to 100, reflecting the 

performance by the student for a given play event. For the analysis, this target 

variable has been binarized it indicate pass/fail.  

 

A note on leakage 

To avoid leakage (a situation where the data within the feature variables contain 

information that would only be available after the outcome event), we ensured that all 

aggregated usage metrics were calculated before the play event. For example, for 

usage_frequency, the metric is calculated for each play event for that student from the 

start of the year up until, but excluding that play event. student_passrate_90 (the ratio of 

lessons passed to lessons played by a student) and lesson_passrate_90 (the ratio of 

passed attempts to total attempts for a specific lesson) were calculated using a trailing 

90-day window from each lesson play event. For example, for a play event on March 3rd 

2023, we calculate the student’s average pass rate over the past 90 days and encode that 

pass rate as the student_passrate for that specific play event.  
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Correlation Analysis 

We begin the analysis by examining correlations between the individual features and the 

target variable (lesson score). A positive correlation is observed between lesson score 

and metrics such as student_passrate_90 (correlation coefficient = 0.43) and 

lesson_passrate_90 (correlation coefficient = 0.50), indicating that higher rates of student 

and lesson passes are linked to elevated lesson scores. Conversely, weaker correlations 

are observed with features like usage_consistency (correlation coefficient = -0.01) and 

usage_retention (correlation coefficient = 0.02), suggesting a more nuanced relationship 

between these metrics and lesson outcomes.  

 
Fig 2. Correlation of all features over Lesson Score 

Based on the correlation analysis between each feature and lesson_score, features can be 

categorized into distinct tiers based on their influence on predicting lesson scores 

through linear relationships.  

In Tier 1 we have features like lesson_passrate_90 and student_passrate_90 which exhibit 

strong positive correlations with lesson_score, indicating a significant contribution to 
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predicting lesson outcomes. Moderately correlated features, such as class_grade_3 and 

season_Spring, fall into Tier 2, contributing positively but to a lesser extent. Tier 3 

comprises features with weak positive correlations, like usage_retention and 

Ethnicity_White, which have minor but discernible impacts on predicting lesson scores. 

Conversely, features in Tier 4 display weak negative correlations or no significant 

correlation with lesson_score, suggesting minimal influence or even counter productivity 

in a linear relationship model. Understanding the tiered influence of these features is 

pivotal for constructing effective predictive models for lesson scores, ensuring informed 

decision-making in educational settings. 

Next, we turn our attention to examining correlations between features. For the first part 

of this predictive modeling problem, we're interested in trying to understand how 

features relate to each other and how they get stack ranked as "important" in making 

predictions. Most models cannot provide informative feature rankings when the features 

are correlated with each other. Below we discuss the inter-correlation between features 

among themselves - 

 
Fig 3. Correlation Heatmap among all features 

From above figure we identify Inter-feature relationships with moderate correlations 

within the dataset. Notably, usage_frequency exhibits a positive association with 

usage_depth, with a correlation coefficient of 0.61, indicating a potential link between the 
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frequency and depth of product usage. Conversely, a negative correlation is observed 

between usage_consistency and usage_retention, with a correlation coefficient of -0.40, 

suggesting a trade-off between usage consistency and retention over time. 

Furthermore, student_passrate_90 shows a correlation with lesson_passrate_90, implying 

that as students' passrate improves, they are more adept at handling more challenging 

lessons. Additionally, metrics such as usage_depth, usage_frequency, usage_consistency, 

and usage_retention are closely interrelated, with increases in one metric often 

corresponding to increases in others. 

Moreover, there is a positive correlation between class_grade_3 and both 

student_passrate_90 and lesson_passrate_90. However, this correlation gradually 

decreases as class grade level increases, indicating that students at higher grade levels 

may find it slightly more challenging to pass lessons due to the increased complexity of 

the curriculum across higher grades. 

Analysis of Distributions: Towards Predictivity 

The above correlation analysis highlights the complex relationships between predictor 

variables and the target variable, lesson_score. We’d like to get a bit better 

understanding beyond a simple correlation of the relationship between each variable and 

it’s potential value as a predictive feature. Fig 4. shows plots of the normalized 

distributions (kernal density estimations) for a subset of potentially informative features. 

Each distribution is plotted separately for the pass/fail target events, potentially 

highlighting areas of key distinction between student learning outcomes.  
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Fig 4. Split plot of Continous Features with respect to Lesson Outcome (Pass: 1, Fail: 0) 

Fig. 4 shows that student_passrate_90 and lesson_passrate_90 exhibit distinct separation 

between lesson outcomes, indicating their strong predictive potential. In agreement with 

the correlation analysis, the data indicates that lesson_passrate_90 and 

student_passrate_90 are likely the two most predictive factors in this problem. This 

suggests that lessons which have historically been challenging to students are likely a 

leading indicator for subsequent student success. Similarly, the sizable splitting for 

student_passrate_90 seen in Figure 4e suggests that past student performance on 

lessons is another strong indicator of future success. On the other hand, and somewhat 

surprisingly, features such as days_since_last_play and usage_consistency show significant 

overlap in distributions between pass/fail, suggesting limited linear predictive power. 
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However, the distributions for usage_frequency, play_seconds_of_duration, and 

students_per_class reveal subtle distinctions that might be exploitable by more 

sophisticated non-linear models. 

The long tail distribution of feature 'play_seconds_of_duration' indicates that students 

often pause a lesson after starting it, which may cause them to struggle with the 

remaining questions when they return. This can result in a failure to complete the lesson. 

Other factors, such as interruptions during the lesson, can also hinder student progress, 

leading to higher failure rates. 

Model Selection 

The above analysis highlights the significance of non-linear and complex relationships 

within the dataset. These interactions, often missed in linear evaluations, can provide 

substantial predictive power. We have structured the data as a moment-in-time binary 

classification problem and chosen to use a Random Forest Classifier (RFC) for the 

subsequent analysis. RFCs are particularly well-suited for this task due to their ability to 

handle mixed data types and capture non-linear relationships, making them ideal for 

predicting learning outcomes. By constructing multiple decision trees and combining 

their predictions, RFCs effectively model intricate decision boundaries within continuous 

variables. The feature importance metrics help identify influential variables, refining 

feature selection and enhancing model interpretability. Additionally, RFCs can 

accommodate heterogeneous data types without extensive preprocessing, further 

underscoring their utility in creating accurate and interpretable predictive models. Most 

importantly, Random Forest models are highly interpretable, as it is straightforward to 

trace how individual features contribute to the final prediction. 

The data is randomly split 80/20 into a training set and an evaluation set. The RFC is then 

applied to the training set, and we evaluate the trained model’s performance on the 

evaluation set. 
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Results 

Model Evaluation 

We first examine the overall performance of the trained RFC model on the evaluation 

data set by looking at the confusion matrix and classification report. The confusion matrix 

provides a breakdown of predicted versus actual outcomes. For lesson_score = 0, the 

classifier correctly predicts 21,172 instances as failures (true negatives), but misclassifies 

3,204 instances as successes (false positives). Similarly, for class 1, the classifier accurately 

predicts 19,318 instances as successes (true positives), but misses 5,381 instances, 

incorrectly classifying them as failures (false negatives). 

 

 
Table 1. Classification report for the trained Random Forest Classifier  

applied to the evaluation data set.  

Next, we examine the model’s accuracy, precision, and recall. The trained RFC exhibits an 

accuracy of 83%, indicating that it correctly predicts the outcome for 83% of the 

instances in the evaluation dataset. Upon closer examination of the precision and recall 

metrics, we observe that for lesson_score = 0 (indicating a lesson was not passed), the 

classifier achieves a precision of 80% and a recall of 87%. This indicates that out of all 

instances predicted as lesson_score = 0, 80% are indeed true negatives, while the 

classifier successfully identifies 87% of the actual negative instances. Conversely, for 

lesson_score = 1 (indicating passing a lesson), the precision is 86%, indicating that out of 

all instances predicted as lesson_score = 1, 86% are true positives. However, the recall for 
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lesson_score = 1 is slightly lower at 78%, implying that the classifier misses 

approximately 22% of the actual positive instances.  

We note here that for the purposes of this analysis the overall accuracy score of the 

model is not a quantity of interest. We are not attempting to build the “most predictive” 

model, rather we are interested in model interpretability and obtaining a relative stack 

ranking of leading indicators. For that reason, we have included a completely random 

number as a feature in the data set against which we can compare other features. This 

inclusion inherently reduces the accuracy of a trained model. Regardless, we can extract a 

few insights from the classifier performance. 1. The model accuracy could be improved 

further, likely indicating that there are other demographic or behavioral features missing 

from the training data which might be informative. 2. The fit model fairly balances the 

tradeoff between precision and recall, with both macro values at 83%. When precision 

and recall are balanced, the predictive features identified in a feature importance analysis 

are likely to contribute to fairly between accurately detecting relevant success instances 

(true positives) and minimizing incorrect success predictions (false positives). This means 

that the features deemed important are consistently valuable across different aspects of 

the classification task. If the model had instead been trained and optimized to, for 

example, maximize precision, then this favoritism towards certain kinds of predicted 

success would be similarly reflected in the feature importance analysis.  

Evaluation via Feature Importance 

We examined feature importance using three techniques: model feature importance (Gini 

impurity), permutation importance, and the SHapley Additive exPlanations (SHAP) 

method. The RFC’s model feature importance measures the average decrease in Gini 

impurity caused by a feature across all trees in the forest, indicating its contribution to 

the model. Permutation importance assesses the importance of a feature by randomly 

shuffling its values and measuring the decrease in model performance, thus showing 

how crucial the feature is for accurate predictions. The SHAP method, based on 

cooperative game theory, explains the model output by indicating the contribution of 

each feature to individual predictions relative to the average prediction. The results of all 

three methods were generally consistent. In the following discussion, we focus our 

attention on the results from the SHAP feature importance. 
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Fig 5. shows the SHAP feature importances for the evaluation data set. The SHAP values 

represent the impact of each feature on the model output and can be used to identify 

which features contribute the most information to the model. The features are stack 

ranked from top to bottom according to their overall impact in influencing predictions 

(feature importance). The individual dots represent individual predictions, and the color 

of each dot represents the feature value (red: high; blue: low). The x-axis of a SHAP 

visualization represents the SHAP value, which indicates the impact of each feature on 

the model's output for a particular prediction. Positive SHAP values indicate that the 

feature pushes the prediction towards a higher value, while negative SHAP values 

indicate that the feature pushes the prediction towards a lower value. It is important to 

note that SHAP values are not constrained to a binary interpretation of success (1) or 

failure (0), but rather they show how much each feature contributes to the deviation from 

the average prediction. 

 
Fig 5. SHAP Feature Importance 
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Based of above SHAP plot, we can infer following primary influences in determining 

lesson outcome for each student. A low lesson_passrate_90 value pushes the prediction 

strongly towards failure (lesson_score = 0) and a high student_passrate_90 value pushes 

the prediction towards success (lesson_score = 1), but with a slightly weaker contribution 

to the overall prediction than lesson_passrate_90.  

We note that the correlation analysis, analysis of the raw distributions, and feature 

importance have each indicated that these two variables are the leading indicators for 

predicting whether or not a student will pass a lesson at any given moment in time. We 

interpret this result as follows. At any given moment in time, the two most predictive 

factors for whether or not that student will pass the lesson presented to them is 

determined by their past history of success with prior DreamBox Math lessons and the 

passrate of the lesson presented to them. While other factors do contribute to success 

above random chance, they contribute to the prediction with weaker weights than those 

two primary factors.  

Next, we would like to briefly discuss a few other notable results from the SHAP analysis. 

First, the first usage-specific metric that bubbles to the top is play_seconds_of_duration, 

indicating that the time that a student spends on the lesson is highly predictive. The next 

highest usage feature is usage_frequency, which suggests that students who have been 

using DreamBox math lessons more often throughout the school year do perform better 

on the lessons. Lastly, the model has weighted all of the ethnicity features to 

contribute to predictions of lesson success at a level at or below random chance. 

We will discuss this point more later.  

Feature Reduction 

Given the dominance of the two primary features, and their conceptual limitation in 

helping us answer the issue of equitable outcomes in student success (e.g. students who 

have demonstrated success (over the trailing 90 days) continue to show success, and 

hard lessons tend to be challenging for students), we continue our analysis by removing 

these two features and retraining the RFC on the reduced data set. This provides a more 

nuanced understanding of the influence of product usage factors and the impact of 

ethnicity. The resulting model had an accuracy of 66%, macro precision of 66%, and 

macro recall of 68%, indicating a worsened performance in the absence of those two key 

predictive features. Similar to the preceding analysis on feature importance, we found 

that the SHAP, permutation, and Gini approaches to feature importance generally 
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showed similar results. We next discuss the feature importance results obtained using the 

SHAP method (see Fig. 6).  

 
Fig. 6. SHAP Plot Following Feature Reduction: Model analysis with Lesson Difficulty and Student 

Proficiency removed.  

Fig. 6 shows that a number of features contribute to the model’s prediction with 

comparable strength. No single feature or subset of features completely determines the 

model’s outputs. We notice immediately that several grade level features bubble to the 

top, particularly grade 3, 5, and 6. These grades also showed moderate correlations with 

the lesson pass rate feature (see Fig. 3), suggesting that the dominance of these variables 

are most likely stemming from the nature of the typical pass rates of these lessons in 

these grades. We note here that “more difficult” or “easier” lessons by grade level is not 

an absolute statement of difficulty but rather that the model has noticed and parsed out 

typical performance variabilities in the lessons presented on average in these grade 

levels. Since DreamBox Math provides adaptive learning pathways, students in these 

grades still progress and show learning growth even with slight variations in overall pass 

rate by grade.  
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This analysis also shows that the top in-product usage feature is the 

play_seconds_of_duration, or the time that students actually take to complete the lesson. 

The negative influence of play_seconds_of_duration highlights the impact of frequent 

interruptions and pauses during lessons on student performance, which often leads to 

higher failure rates. We also find that top trailing usage measure that predicts success is 

usage_frequency. This result indicates that the average number of lessons played per 

week is a strong determiner of student success in DreamBox Math. We find the 

remaining usage-based trailing indicators (usage_consistency, usage_retention, 

usage_depth, and days_since_last_play). It was surprising to us to learn that the days 

since last play and usage consistency were not strong factors. We also note here that 

usage_depth is correlated with usage_frequency as these are conceptually similar 

measures. Thus, the model has selected usage_frequency as the better of the two 

definitions for model predictions. A model oriented around accuracy would likely benefit 

from collapsing these two features into one variable using a dimensional reduction 

technique such as PCA. 

This analysis also shows that the algorithm again finds that student ethnicity contributed 

to prediction of student success at a scale below random chance. We can fairly conclude 

at this point that ethnicity is not a strong factor determining these moment-in-time 

predictions for whether or not an individual student will pass a given lesson in DreamBox 

Math. Although usage patterns for this school district generally mirror those found 

across the whole of student usage within DreamBox Math, we stress that this conclusion 

is strictly only valid for the data and school district under investigation in this study.  

Comments on Seasonality 

Seasonality is a critical variable underlying usage patterns in Education. Back-to-school, 

winter break, Mother’s day, 100th day of school, assessment season are all typical 

markers of changes in usage patterns throughout EdTech products, particularly in grades 

3-6. Below, we plot in Fig 7a, the weekly average pass rate for the full data set used for 

this analysis.  
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Fig 7a. Average Weekly Pass Rate & 7b. Seasonality Analysis 

Figure 7a presents the average weekly lesson pass rates from October 2022 to May 2023. 

The data remains relatively stable initially, with a minor dip observed in early December, 

likely due to school breaks and holidays. This is followed by a sharp recovery in January 

2023 as students resume their regular schedules. Subsequent weeks demonstrate a 

general upward trend in pass rates, with a slight decline beginning in mid-March, 

suggesting dynamic fluctuations in student performance potentially linked to academic 

calendar events. 

Figure 7b illustrates the distribution of lesson pass rates across the Fall, Winter, and 

Spring seasons. The data indicates a consistent pattern across all seasons, with 

approximately 80% of lessons resulting in a pass, reflecting stable performance 

throughout the academic year. Notably, there is a marked improvement in pass rates 

from Winter to Spring, possibly due to factors such as increased familiarity with the 

curriculum, improved teaching methods, and heightened student motivation as the 

academic year progresses. 
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Disparate Impact: An Alternate Measure of Student 

Equity 

Introduction to Disparate Impact 

In the above analysis, we evaluated the performance of a machine learning model to gain 

insights into the role that various factors (including student ethnicity) play in determining 

the moment-in-time likelihood that an individual student will pass a given DreamBox 

Math lesson. This is certainly one way to explore the problem, but acknowledge that such 

an approach is akin to looking through at a problem through a single lens. We wish to 

develop multiple measures to understand our effectiveness in providing equitable 

outcomes for student learning.  

Towards that goal, we now introduce the concept of “disparate impact.” Disparate impact 

is a metric designed to assess fairness by providing a measure of favorable outcomes 

across diverse demographic groups. The ideal for equitable outcomes is found when the 

disparate impact ratio, a value ranging from 0 to 1, is equal to 1 across all groups.  

 
Fig 8. Formula to calculate Disparate Impact (DI) 

To calculate Disparate Impact, we assess the pass rates of DreamBox Math lessons 

among two ethnic groups, Group A and Group B. We calculate the pass rate for each 

group by finding the ratio of passed lessons to total students as shown in Fig 8 where, A 

is the Student sub-group and P(Y=1) is the Probability of positive outcome for the sub-

group. We then compare these ratios to identify any disparities. Finally, we evaluate the 

extent of these disparities among different groups using these values, where a value 

close to 1 indicates fair outcomes. Significant deviations from 1 suggest biases that 

require further investigation to ensure equitable educational opportunities. 
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Benchmarking Disparate Impact in DreamBox Math 

 

Fig 9a. Breakdown of Students by Demography & 9b.  

Disparate impact factor for each Demographic group 

An analysis of disparate impact in DreamBox Math. a) Bar chart showing the breakdown 

of students by each demographic group. In the data provided, 74% of students are 

White, 16% are Hispanic, 4% are black and asian each and 1% Indigenous. The Disparate 

Impact analysis assesses the ratio of favorable outcomes across various ethnic groups 

within the context of student success in DreamBox Math. The ratios obtained for each 

group are as follows: Asian (1.00), Black (0.98), Hispanic (0.98), Indigenous (0.93), and 

White (0.98). The analysis reveals a consistent proportion of positive outcomes 

across all ethnic groups, indicating a relatively uniform distribution of success rates 

among students. These findings, in conjunction with the above analysis of feature 

importance, suggest a minimal level of bias or unfairness in the outcomes across 

different ethnic groups within the DreamBox Math environment for the specific School 

District. We again stress that this analysis is conducted on a usage data from a single 

school district, and are not definitively generalizable to the entire student population. 

Further exploration and analysis on a broader scale would be necessary to validate these 

observations and ensure equitable educational opportunities for all students using 

DreamBox Math. 
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The 80% Rule 

This rule states that a selection rate for any racial, ethnic, or gender group that is less 

than 80% of the rate for the group with the highest rate signals potential disparate 

impact (unfairness). The 80% rule, serves as a crucial benchmark for assessing disparate 

impact, particularly in employment practices, but its principles extend to other domains 

such as education and algorithmic fairness. In our case, the 80% rule falls, coincidentally, 

at 0.8 as the highest disparate impact score is 1.0. All demographics in this study 

displayed a disparate impact at or above 0.93, significantly above the 80% rule, 

demonstrating that engagement with DreamBox Math lessons have shown a fair balance 

of outcomes amongst the sub groups.  

Applying the 80% rule in the context of AI in education is essential to ensure fair 

treatment across diverse student populations. As AI becomes increasingly integrated into 

educational tools, adherence to this guideline helps identify and mitigate biases, 

fostering equitable outcomes. This aligns with national guidelines on ethical AI 

deployment, such as those outlined by the U.S. Department of Education’s Office of 

Educational Technology. Their report, "Artificial Intelligence and the Future of Teaching 

and Learning," underscores the importance of transparency, inclusivity, and fairness in 

educational AI applications, reinforcing the necessity of rigorous bias evaluation methods 

like the 80% rule to promote equitable educational opportunities for all students. For 

further details on the 80% rule and its application, refer to the EEOC Uniform Guidelines 

(EEOC). 

Conclusions and Outlook 

In this study, we explored factors which might predict student learning outcomes 

(passing or failing a particular lesson) in DreamBox Math at any moment-in-time during 

the 2022/23 school year. We partnered with a U.S. public school district who provided 

student ethnicity data. While we did not have access to other important student 

characteristics (e.g. free lunch status), we were able to compare the importance of 

student ethnicity against other factors, such as usage and lesson difficulty in determining 

the likelihood of a student passing or failing a DreamBox Math Lesson. We prepared the 

data as a binary classification problem, carefully structured the features to reflect 

conceptual usage patterns, mitigated leakage, and applied a random forest classifier to 

the data. In evaluating the model, we found that the model (and variations of different 

models) never weighted student ethnicity above the level of random chance when 

https://www.eeoc.gov/laws/guidance/cm-621-height-weight-requirements
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making predictions about student learning outcomes. We also introduced a new 

measure, Disparate Impact, which has more commonly been used to analyze fairness 

practices in the housing market, as an alternative benchmark for interpreting fairness in 

AI-based learning platforms.  

As part of our partnership with the Bill & Melinda Gates Foundation, we set out to 

proactively participate in contributing to responsible AI in Education and EdTech 

products. Our first step towards those goals has been to carefully evaluate our existing 

adaptive engine as it makes moment-in-time adaptive lesson recommendations to 

students. Since its release to students over a decade ago, we have been monitoring this 

system internally, and have continued to evaluate the effectiveness of the adaptive 

system as we have updated and improved the content and engine over time. As the 

world moves further and further towards GenAI systems which are increasingly black box 

and trained on questionable and unknowable data sources, it is more important than 

ever to provide as transparent a view as possible into the nature of the systems which are 

actively teaching children at immense scale (> 5M students).  
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