»@DISCO\Ie ry Exploring Fairness in an

Adaptive Learning Platform

Exploring Fairness in an Adaptive Learning
Platform

Introduction

About DreamBox Math

DreamBox Math from Discovery Education is an adaptive K-8 math program, rated ESSA-
Strong, and serves 5 million students across all 50 states, as well as in Canada and
Mexico. Designed by educators, DreamBox Math aims to introduce, reinforce, and
formatively assess foundational math concepts, supplementing classroom curricula. The
program supports teachers and students by identifying and addressing gaps in student
knowledge, thereby strengthening foundational skills and ensuring students are
prepared for classroom learning.

DreamBox Math lessons are crafted to be engaging and enjoyable for students,
emphasizing real-world applications and models. Students are empowered to choose
their next lesson from a selection curated by DreamBox's proprietary adaptive engine.
This adaptive engine is a core component of DreamBox, meeting students at their
current level, recognizing each child's unique strengths and areas for development, and
providing a personalized learning experience tailored to their individual needs.

DreamBox and Al

With the rapid advancements in Generative Al (GenAl) and increased public awareness
around tools like ChatGPT, companies face significant pressure to integrate these
technologies into their core products. However, at DreamBox, we remain focused on
achieving optimal and equitable learning outcomes for all students. Guided by our core
mission, we have adopted a conscientious approach as we explore moving beyond "Al
1.0" and begin integrating generative pre-trained transformers into our products.

A key concern in deploying these advanced technologies is the potential for inherent
biases. Large language models (LLMs) can inadvertently perpetuate and amplify existing
biases in their training data, manifesting as gender, racial, or cultural stereotypes. Biased
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Al systems could further widen pre-existing educational disparities, making it crucial to
ensure that Al-generated recommendations are equitable and unbiased.

Addressing these concerns aligns with national guidelines for Al in education, such as
those outlined by the U.S. Department of Education’s Office of Educational Technology
(Artificial Intelligence and the Future of Teaching and Learning), which emphasize
fairness, accountability, and transparency in Al systems. These guidelines advocate for
rigorous testing and validation to ensure Al tools are inclusive and free of bias. By
committing to these principles, our efforts to develop predictive and generative models
for DreamBox Math aim not only to enhance learning outcomes but also to promote
fairness and inclusivity. This ethical approach to Al deployment underscores the broader
significance of our research, striving to create a more equitable and effective educational
landscape for all students.

Research Overview

The purpose of this technical document is to aid the advancement of transparent and
equitable Al-systems by sharing publicly some of our research into factors which
influence student learning outcomes in DreamBox Math, including but not limited to the
impact of student ethnicity.

Methodology

Data Collection and Preparation

For this study, we collected usage data from a single U.S. public school district
accumulating 1.24M play events from 7,707 students spanning grades 3 through 6. A
play event is defined as an individual instance of a lesson being played by a student at a
specific time. This data was collected from October 2022 to June 2023, during the 2022-
23 school year.

For the purposes of this research study and others, the district under investigation
provided student ethnicity data. Each record in the dataset represents a play event,
detailing the associated student's behavioral characteristics with product usage, various
play-level metrics, and classroom features at that point in time. We note that there were
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several crucial diversity dimensions (such as free-lunch, ELL, household income,
independent learning plans, etc...) that were unavailable in this study.

The dataset includes metrics such as product usage, class size, grade level, lesson
difficulty, student pass rate, and ethnicity. These metrics were chosen to evaluate their
influence on student success and to ensure a comprehensive analysis of the factors
affecting learning outcomes in DreamBox Math.

Before Conversion After Conversion
1000000 .

800000 + 7

600000 .

400000 7

200000 7

0 20 40 60 80 100 0 1
a) Raw Lesson Scores b) Binary Lesson Scores

Fig 1. Target variable overview. a) Raw lesson scores from 1.24M play events spanning
grades 3 through 6. b) The raw lesson scores are converted into a binary variable (lesson_score)
used in this analysis. For the purposes of this analysis, raw lesson scores at or above 80 are
considered a pass (lesson_score = 1).

The target variable in our dataset is the lesson score, which reflects the student's
performance in a given lesson at a particular time. Originally a continuous variable
spanning a range of 0 to 100, we converted the lesson score into a binary variable: O if
the lesson score < 80, and 1 otherwise.

A common problem in developing predictive models is dealing with large class
imbalances in the target variable. In this case, 83% of the play events included instances
where the student passed. To handle this class imbalance of the raw data set, we have
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randomly under-sampled the pass play events (lesson_score = 1) resulting in a data set
with approximately 244,954 play events from 7,296 students.

Below, we provide a detailed data dictionary describing the individual features
(predictive factors) that might impact learning outcomes (target variable)

Features
Play-level features

e student passrate_90. The ratio of successfully completed lesson play attempts to
the total number of lesson play attempts by the student, calculated from 90 days
prior to the current play attempt's timestamp up to the current play attempt. This
metric only includes complete play attempts, excluding those left unfinished.

e usage_frequency. The average number of lessons played per week by the student
from the start of the school year to the current lesson play event.

e usage_consistency. The standard deviation of the average number of lessons
played per week by the student from the start of the school year to the current
lesson play event.

e usage_deptfhr. The total number of lesson plays by the student from the start of the
school year to the current lesson play event.

e usage_retention. The total number of weeks in which the student engaged in
lesson plays from the start of the school year to the current lesson play event.

e play_seconds_of duratiorn. The total time, in seconds, spent by the student to
complete a particular lesson play event.

e qdays since last play. The number of days since the student last engaged in a
lesson play event.

e random_num. A randomly generated value ranging between 0 and 1. We include
this for analysis of feature importance of the predictive model.

o Jesson_passrate 90. This is the ratio of successfully completed attempts to the
total number of attempts for a specific lesson, measured from 90 days prior to the
current play attempt's timestamp up to the current play attempt.

e season:The season at which the play event occurred. One-hot-encoded into three
variables:

Fall: August to November, Winter: December to February, Spring: March to May
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Student-level features

e ethnicity. The ethnic group to which the student belongs. This data was provided
by the school district and is mutually exclusive categorical variable for each
student. This data was one-hot-encoded into the five ethnicity groups provided by
the district: Asian, Black, Hispanic, Indigenous, and White.

o class_grade_numeric. The grade level of the class that the student was part of
during a play event. This categorical variable is mutually exclusive and was one-
hot-encoded before feeding into the predictive model.

o number_of classes. The total number of classes the student was enrolled in
throughout the entire school year (July 2022 — June 2023).

Class-level features

e students_per _class. The number of students enrolled in the class that the student
was part of during a lesson play event.

Target variable

e Jesson_score Originally a continuous variable ranging from 0 to 100, reflecting the
performance by the student for a given play event. For the analysis, this target
variable has been binarized it indicate pass/fail.

A note on leakage

To avoid leakage (a situation where the data within the feature variables contain
information that would only be available after the outcome event), we ensured that all
aggregated usage metrics were calculated before the play event. For example, for
usage_frequency, the metric is calculated for each play event for that student from the
start of the year up until, but excluding that play event. student_passrate_90 (the ratio of
lessons passed to lessons played by a student) and lesson_passrate_90 (the ratio of
passed attempts to total attempts for a specific lesson) were calculated using a trailing
90-day window from each lesson play event. For example, for a play event on March 3rd
2023, we calculate the student’s average pass rate over the past 90 days and encode that
pass rate as the student_passrate for that specific play event.

©2024 Discovery Education, Inc.




@Dlscove ry Exploring Fairness in an

Adaptive Learning Platform

Correlation Analysis

We begin the analysis by examining correlations between the individual features and the
target variable (lesson score). A positive correlation is observed between lesson score
and metrics such as student_passrate_90 (correlation coefficient = 0.43) and
lesson_passrate_90 (correlation coefficient = 0.50), indicating that higher rates of student
and lesson passes are linked to elevated lesson scores. Conversely, weaker correlations
are observed with features like usage_consistency (correlation coefficient = -0.01) and
usage_retention (correlation coefficient = 0.02), suggesting a more nuanced relationship
between these metrics and lesson outcomes.

Correlation of Independent Variables with Respect to Lesson Score
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Fig 2. Correlation of all features over Lesson Score

Based on the correlation analysis between each feature and lesson_score, features can be
categorized into distinct tiers based on their influence on predicting lesson scores
through linear relationships.

In Tier 1 we have features like lesson_passrate_90 and student_passrate_90 which exhibit
strong positive correlations with lesson_score, indicating a significant contribution to
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predicting lesson outcomes. Moderately correlated features, such as class_grade_3 and
season_Spring, fall into Tier 2, contributing positively but to a lesser extent. Tier 3
comprises features with weak positive correlations, like usage_retention and
Ethnicity_White, which have minor but discernible impacts on predicting lesson scores.
Conversely, features in Tier 4 display weak negative correlations or no significant
correlation with lesson_score, suggesting minimal influence or even counter productivity
in a linear relationship model. Understanding the tiered influence of these features is
pivotal for constructing effective predictive models for lesson scores, ensuring informed
decision-making in educational settings.

Next, we turn our attention to examining correlations between features. For the first part
of this predictive modeling problem, we're interested in trying to understand how
features relate to each other and how they get stack ranked as "important” in making
predictions. Most models cannot provide informative feature rankings when the features
are correlated with each other. Below we discuss the inter-correlation between features
among themselves -

Correlation Heatmap
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Fig 3. Correlation Heatmap among all features

From above figure we identify Inter-feature relationships with moderate correlations
within the dataset. Notably, usage_frequency exhibits a positive association with
usage_depth, with a correlation coefficient of 0.61, indicating a potential link between the
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frequency and depth of product usage. Conversely, a negative correlation is observed
between usage_consistency and usage_retention, with a correlation coefficient of -0.40,
suggesting a trade-off between usage consistency and retention over time.

Furthermore, student passrate 90 shows a correlation with lesson_passrate_90, implying
that as students' passrate improves, they are more adept at handling more challenging
lessons. Additionally, metrics such as usage_depth, usage_frequency, usage_consistency,
and usage_retention are closely interrelated, with increases in one metric often
corresponding to increases in others.

Moreover, there is a positive correlation between class_grade_3 and both

student passrate_90 and lesson_passrate_90. However, this correlation gradually
decreases as class grade level increases, indicating that students at higher grade levels
may find it slightly more challenging to pass lessons due to the increased complexity of
the curriculum across higher grades.

Analysis of Distributions: Towards Predictivity

The above correlation analysis highlights the complex relationships between predictor
variables and the target variable, lesson_score. We'd like to get a bit better
understanding beyond a simple correlation of the relationship between each variable and
it's potential value as a predictive feature. Fig 4. shows plots of the normalized
distributions (kernal density estimations) for a subset of potentially informative features.
Each distribution is plotted separately for the pass/fail target events, potentially
highlighting areas of key distinction between student learning outcomes.
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Fig 4. Split plot of Continous Features with respect to Lesson Outcome (Pass: 1, Fail: 0)

Fig. 4 shows that student_passrate_90 and lesson_passrate_90 exhibit distinct separation
between lesson outcomes, indicating their strong predictive potential. In agreement with
the correlation analysis, the data indicates that lesson_passrate_90 and
student_passrate_90 are likely the two most predictive factors in this problem. This
suggests that lessons which have historically been challenging to students are likely a
leading indicator for subsequent student success. Similarly, the sizable splitting for
student_passrate_90 seen in Figure 4e suggests that past student performance on
lessons is another strong indicator of future success. On the other hand, and somewhat
surprisingly, features such as days_since_last_play and usage_consistency show significant
overlap in distributions between pass/fail, suggesting limited linear predictive power.
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However, the distributions for usage_frequency, play_seconds_of_duration, and
students_per_class reveal subtle distinctions that might be exploitable by more
sophisticated non-linear models.

The long tail distribution of feature 'play_seconds_of _duration' indicates that students
often pause a lesson after starting it, which may cause them to struggle with the
remaining questions when they return. This can result in a failure to complete the lesson.
Other factors, such as interruptions during the lesson, can also hinder student progress,
leading to higher failure rates.

Model Selection

The above analysis highlights the significance of non-linear and complex relationships
within the dataset. These interactions, often missed in linear evaluations, can provide
substantial predictive power. We have structured the data as a moment-in-time binary
classification problem and chosen to use a Random Forest Classifier (RFC) for the
subsequent analysis. RFCs are particularly well-suited for this task due to their ability to
handle mixed data types and capture non-linear relationships, making them ideal for
predicting learning outcomes. By constructing multiple decision trees and combining
their predictions, RFCs effectively model intricate decision boundaries within continuous
variables. The feature importance metrics help identify influential variables, refining
feature selection and enhancing model interpretability. Additionally, RFCs can
accommodate heterogeneous data types without extensive preprocessing, further
underscoring their utility in creating accurate and interpretable predictive models. Most
importantly, Random Forest models are highly interpretable, as it is straightforward to
trace how individual features contribute to the final prediction.

The data is randomly split 80/20 into a training set and an evaluation set. The RFC is then
applied to the training set, and we evaluate the trained model’s performance on the
evaluation set.
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Results

Model Evaluation

We first examine the overall performance of the trained RFC model on the evaluation
data set by looking at the confusion matrix and classification report. The confusion matrix
provides a breakdown of predicted versus actual outcomes. For lesson_score = 0, the
classifier correctly predicts 21,172 instances as failures (true negatives), but misclassifies
3,204 instances as successes (false positives). Similarly, for class 1, the classifier accurately
predicts 19,318 instances as successes (true positives), but misses 5,381 instances,
incorrectly classifying them as failures (false negatives).

precision recall fl-score support

e @.80 @.87 B.83 24376

1 ®.86b @.7/8 B.82 24699

accuracy B.83 49875

macro avg @.83 @.83 B.83 49875

weighted avg @.83 8.83 0.83 49875
Confusion Matrix:

[[21178 3198]
[ 5353 19346]]

Table 1. Classification report for the trained Random Forest Classifier
applied to the evaluation data set.

Next, we examine the model’s accuracy, precision, and recall. The trained RFC exhibits an
accuracy of 83%, indicating that it correctly predicts the outcome for 83% of the
instances in the evaluation dataset. Upon closer examination of the precision and recall
metrics, we observe that for lesson_score = 0 (indicating a lesson was not passed), the
classifier achieves a precision of 80% and a recall of 87%. This indicates that out of all
instances predicted as lesson_score = 0, 80% are indeed true negatives, while the
classifier successfully identifies 87% of the actual negative instances. Conversely, for
lesson_score = 1 (indicating passing a lesson), the precision is 86%, indicating that out of
all instances predicted as lesson_score = 1, 86% are true positives. However, the recall for

©2024 Discovery Education, Inc.




»@DISCO\Ie ry Exploring Fairness in an

Adaptive Learning Platform

lesson_score = 1 is slightly lower at 78%, implying that the classifier misses
approximately 22% of the actual positive instances.

We note here that for the purposes of this analysis the overall accuracy score of the
model is not a quantity of interest. We are not attempting to build the "most predictive”
model, rather we are interested in model interpretability and obtaining a relative stack
ranking of leading indicators. For that reason, we have included a completely random
number as a feature in the data set against which we can compare other features. This
inclusion inherently reduces the accuracy of a trained model. Regardless, we can extract a
few insights from the classifier performance. 1. The model accuracy could be improved
further, likely indicating that there are other demographic or behavioral features missing
from the training data which might be informative. 2. The fit model fairly balances the
tradeoff between precision and recall, with both macro values at 83%. When precision
and recall are balanced, the predictive features identified in a feature importance analysis
are likely to contribute to fairly between accurately detecting relevant success instances
(true positives) and minimizing incorrect success predictions (false positives). This means
that the features deemed important are consistently valuable across different aspects of
the classification task. If the model had instead been trained and optimized to, for
example, maximize precision, then this favoritism towards certain kinds of predicted
success would be similarly reflected in the feature importance analysis.

Evaluation via Feature Importance

We examined feature importance using three techniques: model feature importance (Gini
impurity), permutation importance, and the SHapley Additive exPlanations (SHAP)
method. The RFC’'s model feature importance measures the average decrease in Gini
impurity caused by a feature across all trees in the forest, indicating its contribution to
the model. Permutation importance assesses the importance of a feature by randomly
shuffling its values and measuring the decrease in model performance, thus showing
how crucial the feature is for accurate predictions. The SHAP method, based on
cooperative game theory, explains the model output by indicating the contribution of
each feature to individual predictions relative to the average prediction. The results of all
three methods were generally consistent. In the following discussion, we focus our
attention on the results from the SHAP feature importance.
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Fig 5. shows the SHAP feature importances for the evaluation data set. The SHAP values
represent the impact of each feature on the model output and can be used to identify
which features contribute the most information to the model. The features are stack
ranked from top to bottom according to their overall impact in influencing predictions
(feature importance). The individual dots represent individual predictions, and the color
of each dot represents the feature value (red: high; blue: low). The x-axis of a SHAP
visualization represents the SHAP value, which indicates the impact of each feature on
the model's output for a particular prediction. Positive SHAP values indicate that the
feature pushes the prediction towards a higher value, while negative SHAP values
indicate that the feature pushes the prediction towards a lower value. It is important to
note that SHAP values are not constrained to a binary interpretation of success (1) or
failure (0), but rather they show how much each feature contributes to the deviation from
the average prediction.

High
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student_passrate_90
play_seconds_of_duration
class_grade_3
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usage_frequency
students_per_class
usage_consistency
usage_retention
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Fig 5. SHAP Feature Importance
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Based of above SHAP plot, we can infer following primary influences in determining
lesson outcome for each student. A low /esson passrate 90 value pushes the prediction
strongly towards failure (lesson_score = 0) and a high student passrate 90 value pushes
the prediction towards success (lesson_score = 1), but with a slightly weaker contribution
to the overall prediction than /esson_passrate_90.

We note that the correlation analysis, analysis of the raw distributions, and feature
importance have each indicated that these two variables are the leading indicators for
predicting whether or not a student will pass a lesson at any given moment in time. We
interpret this result as follows. At any given moment in time, the two most predictive
factors for whether or not that student will pass the lesson presented to them is
determined by their past history of success with prior DreamBox Math lessons and the
passrate of the lesson presented to them. While other factors do contribute to success
above random chance, they contribute to the prediction with weaker weights than those
two primary factors.

Next, we would like to briefly discuss a few other notable results from the SHAP analysis.
First, the first usage-specific metric that bubbles to the top is play_seconds_of_duration,
indicating that the time that a student spends on the lesson is highly predictive. The next
highest usage feature is usage_frequency, which suggests that students who have been
using DreamBox math lessons more often throughout the school year do perform better

on the lessons. Lastly, the model has weighted all of the ethnicity features to
contribute to predictions of lesson success at a level at or below random chance.
We will discuss this point more later.

Feature Reduction

Given the dominance of the two primary features, and their conceptual limitation in
helping us answer the issue of equitable outcomes in student success (e.g. students who
have demonstrated success (over the trailing 90 days) continue to show success, and
hard lessons tend to be challenging for students), we continue our analysis by removing
these two features and retraining the RFC on the reduced data set. This provides a more
nuanced understanding of the influence of product usage factors and the impact of
ethnicity. The resulting model had an accuracy of 66%, macro precision of 66%, and
macro recall of 68%, indicating a worsened performance in the absence of those two key
predictive features. Similar to the preceding analysis on feature importance, we found
that the SHAP, permutation, and Gini approaches to feature importance generally
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showed similar results. We next discuss the feature importance results obtained using the
SHAP method (see Fig. 6).

High
class_grade_3 -.-—--l—— .
class_grade_6 B —— -’

play_seconds_of_duration —‘.:
class_grade_5 . -‘.-*
usage_frequency '"-——*—'
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usage_depth seen
usage_consistency
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- e
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Random_Num . -+-
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-
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.
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Fig. 6. SHAP Plot Following Feature Reduction: Model analysis with Lesson Difficulty and Student
Proficiency removed.

Fig. 6 shows that a number of features contribute to the model’s prediction with
comparable strength. No single feature or subset of features completely determines the
model’s outputs. We notice immediately that several grade level features bubble to the
top, particularly grade 3, 5, and 6. These grades also showed moderate correlations with
the lesson pass rate feature (see Fig. 3), suggesting that the dominance of these variables
are most likely stemming from the nature of the typical pass rates of these lessons in
these grades. We note here that “more difficult” or “easier” lessons by grade level is not
an absolute statement of difficulty but rather that the model has noticed and parsed out
typical performance variabilities in the lessons presented on average in these grade
levels. Since DreamBox Math provides adaptive learning pathways, students in these
grades still progress and show learning growth even with slight variations in overall pass
rate by grade.
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This analysis also shows that the top in-product usage feature is the
play_seconds_of_duration, or the time that students actually take to complete the lesson.
The negative influence of play_seconds_of_duration highlights the impact of frequent
interruptions and pauses during lessons on student performance, which often leads to
higher failure rates. We also find that top trailing usage measure that predicts success is
usage_frequency. This result indicates that the average number of lessons played per
week is a strong determiner of student success in DreamBox Math. We find the
remaining usage-based trailing indicators (usage_consistency, usage_retention,
usage_depth, and days_since_last_play). It was surprising to us to learn that the days
since last play and usage consistency were not strong factors. We also note here that
usage_depth is correlated with usage_frequency as these are conceptually similar
measures. Thus, the model has selected usage_frequency as the better of the two
definitions for model predictions. A model oriented around accuracy would likely benefit
from collapsing these two features into one variable using a dimensional reduction
technique such as PCA.

This analysis also shows that the algorithm again finds that student ethnicity contributed
to prediction of student success at a scale below random chance. We can fairly conclude
at this point that ethnicity is not a strong factor determining these moment-in-time
predictions for whether or not an individual student will pass a given lesson in DreamBox
Math. Although usage patterns for this school district generally mirror those found
across the whole of student usage within DreamBox Math, we stress that this conclusion
is strictly only valid for the data and school district under investigation in this study.

Comments on Seasonality

Seasonality is a critical variable underlying usage patterns in Education. Back-to-school,
winter break, Mother’s day, 100th day of school, assessment season are all typical
markers of changes in usage patterns throughout EdTech products, particularly in grades
3-6. Below, we plot in Fig 7a, the weekly average pass rate for the full data set used for
this analysis.
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100 1 Lesson Pass Rate by Season
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Fig 7a. Average Weekly Pass Rate & 7b. Seasonality Analysis

Figure 7a presents the average weekly lesson pass rates from October 2022 to May 2023.
The data remains relatively stable initially, with a minor dip observed in early December,
likely due to school breaks and holidays. This is followed by a sharp recovery in January
2023 as students resume their regular schedules. Subsequent weeks demonstrate a
general upward trend in pass rates, with a slight decline beginning in mid-March,
suggesting dynamic fluctuations in student performance potentially linked to academic
calendar events.

Figure 7b illustrates the distribution of lesson pass rates across the Fall, Winter, and
Spring seasons. The data indicates a consistent pattern across all seasons, with
approximately 80% of lessons resulting in a pass, reflecting stable performance
throughout the academic year. Notably, there is a marked improvement in pass rates
from Winter to Spring, possibly due to factors such as increased familiarity with the
curriculum, improved teaching methods, and heightened student motivation as the
academic year progresses.
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Disparate Impact: An Alternate Measure of Student
Equity

Introduction to Disparate Impact

In the above analysis, we evaluated the performance of a machine learning model to gain
insights into the role that various factors (including student ethnicity) play in determining
the moment-in-time likelihood that an individual student will pass a given DreamBox
Math lesson. This is certainly one way to explore the problem, but acknowledge that such
an approach is akin to looking through at a problem through a single lens. We wish to
develop multiple measures to understand our effectiveness in providing equitable
outcomes for student learning.

Towards that goal, we now introduce the concept of “disparate impact.” Disparate impact
is a metric designed to assess fairness by providing a measure of favorable outcomes
across diverse demographic groups. The ideal for equitable outcomes is found when the
disparate impact ratio, a value ranging from 0 to 1, is equal to 1 across all groups.

- P(Y = 1|A = Group_A)
P(Y = 1|A = Group_B)

Fig 8. Formula to calculate Disparate Impact (DI)

To calculate Disparate Impact, we assess the pass rates of DreamBox Math lessons
among two ethnic groups, Group A and Group B. We calculate the pass rate for each
group by finding the ratio of passed lessons to total students as shown in Fig 8 where, A
is the Student sub-group and P(Y=1) is the Probability of positive outcome for the sub-
group. We then compare these ratios to identify any disparities. Finally, we evaluate the
extent of these disparities among different groups using these values, where a value
close to 1 indicates fair outcomes. Significant deviations from 1 suggest biases that
require further investigation to ensure equitable educational opportunities.
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Benchmarking Disparate Impact in DreamBox Math

Ethnicity Distribution per Student Disparate Impact Values by Ethnicity
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Fig 9a. Breakdown of Students by Demography & 9b.
Disparate impact factor for each Demographic group

An analysis of disparate impact in DreamBox Math. a) Bar chart showing the breakdown
of students by each demographic group. In the data provided, 74% of students are
White, 16% are Hispanic, 4% are black and asian each and 1% Indigenous. The Disparate
Impact analysis assesses the ratio of favorable outcomes across various ethnic groups
within the context of student success in DreamBox Math. The ratios obtained for each
group are as follows: Asian (1.00), Black (0.98), Hispanic (0.98), Indigenous (0.93), and
White (0.98). The analysis reveals a consistent proportion of positive outcomes
across all ethnic groups, indicating a relatively uniform distribution of success rates
among students. These findings, in conjunction with the above analysis of feature
importance, suggest a minimal level of bias or unfairness in the outcomes across
different ethnic groups within the DreamBox Math environment for the specific School
District. We again stress that this analysis is conducted on a usage data from a single
school district, and are not definitively generalizable to the entire student population.
Further exploration and analysis on a broader scale would be necessary to validate these
observations and ensure equitable educational opportunities for all students using
DreamBox Math.
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The 80% Rule

This rule states that a selection rate for any racial, ethnic, or gender group that is less
than 80% of the rate for the group with the highest rate signals potential disparate
impact (unfairness). The 80% rule, serves as a crucial benchmark for assessing disparate
impact, particularly in employment practices, but its principles extend to other domains
such as education and algorithmic fairness. In our case, the 80% rule falls, coincidentally,
at 0.8 as the highest disparate impact score is 1.0. All demographics in this study
displayed a disparate impact at or above 0.93, significantly above the 80% rule,
demonstrating that engagement with DreamBox Math lessons have shown a fair balance
of outcomes amongst the sub groups.

Applying the 80% rule in the context of Al in education is essential to ensure fair
treatment across diverse student populations. As Al becomes increasingly integrated into
educational tools, adherence to this guideline helps identify and mitigate biases,
fostering equitable outcomes. This aligns with national guidelines on ethical Al
deployment, such as those outlined by the U.S. Department of Education’s Office of
Educational Technology. Their report, "Artificial Intelligence and the Future of Teaching
and Learning," underscores the importance of transparency, inclusivity, and fairness in
educational Al applications, reinforcing the necessity of rigorous bias evaluation methods
like the 80% rule to promote equitable educational opportunities for all students. For
further details on the 80% rule and its application, refer to the EEOC Uniform Guidelines
(EEQQ).

Conclusions and Outlook

In this study, we explored factors which might predict student learning outcomes
(passing or failing a particular lesson) in DreamBox Math at any moment-in-time during
the 2022/23 school year. We partnered with a U.S. public school district who provided
student ethnicity data. While we did not have access to other important student
characteristics (e.g. free lunch status), we were able to compare the importance of
student ethnicity against other factors, such as usage and lesson difficulty in determining
the likelihood of a student passing or failing a DreamBox Math Lesson. We prepared the
data as a binary classification problem, carefully structured the features to reflect
conceptual usage patterns, mitigated leakage, and applied a random forest classifier to
the data. In evaluating the model, we found that the model (and variations of different
models) never weighted student ethnicity above the level of random chance when
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making predictions about student learning outcomes. We also introduced a new
measure, Disparate Impact, which has more commonly been used to analyze fairness
practices in the housing market, as an alternative benchmark for interpreting fairness in
Al-based learning platforms.

As part of our partnership with the Bill & Melinda Gates Foundation, we set out to
proactively participate in contributing to responsible Al in Education and EdTech
products. Our first step towards those goals has been to carefully evaluate our existing
adaptive engine as it makes moment-in-time adaptive lesson recommendations to
students. Since its release to students over a decade ago, we have been monitoring this
system internally, and have continued to evaluate the effectiveness of the adaptive
system as we have updated and improved the content and engine over time. As the
world moves further and further towards GenAl systems which are increasingly black box
and trained on questionable and unknowable data sources, it is more important than
ever to provide as transparent a view as possible into the nature of the systems which are
actively teaching children at immense scale (> 5M students).
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